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ON THE TEMPERATURE DEPENDANCE OF THE FORMATION CONSTANT
OF THIOCYANATOPENTAAQUOCHROMIUM (III)
IN ACIDIC SOLUTION

1. INTRODUCTION

The ionization constants for the reversible dissociation of carbonxylic acids
pass through a minimum as temperature varies.' If the ionization is regarded as a
one-step or unitary process, then the heat capacity at constant pressure, AC2, must
be negative. Numerous investigators have tried to find expressions to fit the ex-
perimentally observed temperature dependence in order to compute AC§ which is re-
garded as a measure of solute-solvent interactions.? Timimi reviewed these empirical
expressions. 3

More recently, Blandamer® and coworkers in the United Kingdom and
Canada have reexamined the interpretation of negative heat capacities for the ion-
ization of carboxylic acids, using Albery and Robinson's idea® that such nonzero
heat capacities are artificats caused by the presence of intermediates. Starting with
a suggestion by Eigen® that diffusion-controlled intermediates are formed in the ion-
ization of carboxylic acids, Blandamer and coworkers postualted’:® that the dissocia-
tion of carboxylic acids could be written as

RCOOH + 2H,0 =%1~[RCOOH - H;0 - H,0] =52>

[RCOO™ - H,0 - H;0'1 =X2RC00™ + H,0 + H,0" (1)

where the intermediates are hydrogen-bonded, diffusion-controlled, "enounter"
complexes with K1 and K; values near unity. Since K, <<1 for carboxylic acids,
the observed dissociation constant, Ky, is

Ko = K1K2K3/(1+K 1) (2)

Blandamer showed that the observed temperature dependence for K arose from equa-
tion (2) using temperature-independent enthalpies for the individual equilibria K,
K 2, and K 3.

Over the past three years, Blandamer ° '7 has also shown that the solvol-
lysis of many organic compounds with nonzero heat capacities of activation which
had been treated as unitary reactions!® may also be multistep reactions with rapid
preequilibria. Blandamer and colleagues have labeled such temperature-dependent
activation energies, arising from the presence of preequilibria, as "spurious" or
"anomalous."” Blandamer noted that spurious heat capacities are themselves temper-
ature-dependent, °>!° and an expression that he derived to compute enthalpies and
heat capacities of activation also gave temperature-dependent AC2, if preequilibria
were present.’?® Albery and Robinson® chided earlier investigators for fitting rate
or equilibrium constants to expressions with temperature-independent heat capacities.

In contrast to the wealth of information on organic compounds with tempera-
ture-dependent activation energies, there are far fewer examples in the inorganic




s
®

LIt 2enh uiadd Saas Sut e Gaghr g WL R T S T ST R T TR Dt A PP

chemistry literature, particularly for formation constants of strong gomplexes which
one can liken to the formation of carboxylic acids (reverse of equation 2) .2.° A
notable exception is the formation of thiocyanotopentaaquochromium (III), given be-
low:

Cr(H:0)¢™ + NCS™ === Cr(H,0) sNCS?* + H,0 (3)

Postmus and King??s%2? found the equilibrium constant for equation 3 passed through
a minimum in accordance with the behavior of the observed association constant for
carboxylic acids. Postmus and King computed a value of ACB for equation 3, but
they used an expression with a temperature-independent heat capacity.

In view of Blandamer's recent interpretation of carboxylic acid ionization,
one wonders whether the ACg8 that Postmus and King measured is also "spurious."
To this end, Blandamer's expression has been applied to Postmus and King's equili-
brium constants to test the temperature-dependence of ACI% for equation 3.

2. BLANDAMER'S METHOD FOR COMPUTING ACTIVATION PARAMETERS

Blandamer's expression for calculation of thermodynamic parameters from
the temperature dependence of equilibrium data is

AH® AC?
T To T To
K = Koe { R <T To R ° ° (4)

where K = equilibrium constant at temperature, T
K o= equilibrium constant at temperature, T,
AH° = enthalpy at T, and
ACB = heat capacity at Ty.

The equation is obtained by the integration of the van't Hoff isochore between the
temperature Ty and T assuming ACf, is independent of temperature. If ACS§ is
dependent on temperature, equation 4 gives a poor fit and the ACB values as com-
puted do predict the correct trend of the actual AC8 dependence with temperature,
though thermodynamically incorrect. For rate data, K and K, in equation 4 become
k and (ko*T)/To, respectively, and AH® and ACJ become activation parameters.
For a series of measurements at n pairs of K and T, any pair of K and T is set as
Ko and Tg, and all other values of K,T are fit to equation 4 to give AH° and AC
at Temperature T,. The calculation is repeated with a different K,T set as Ky,T )
until all values of T have been used as Ty. This results in n values of AH° and
ACB from which one determines whether ACf is zero, constant, or temperature de-
pendent.

A nonlinear least-squares program??® is used to find the best-fit values of
AH° and AC§ from a set of K,T data. The temperature, T, is the independent
variable, K is the dependent variable, AH° and ACB are parameters to be fit, and
Ko and T, are fixed parameters. The program finds best-fit values of AH® and
4C8 and then computes the equilibrium constants with these best-fit values of AH®°
and ACB to compare the fit between sets of data.
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3. RESULTS AND DISCUSSION

Table A-1*lists the equilibriuin constants Postinus and King measured fo»
the formation constant of Cr(H,0)sNCS**, which were corrected to zero ionic
strength with a modified Debye-Huckel equation. Three formation constants at
14.0°C, 25.1°C and 30.0°C are the ratio of the forward and reverse rate constants.
At 30°C, the formation constant was measured both spectrophotometrically and as
a ratio of rate constants.

In table A-2, which illustrates typical results of the temperature fit with
Blandamer's expression using 94.6°C as an example, one can see that the formation
constants calculated with the best-fit values of AH® and ACJ agree well with the

experimental valves. The results of the calculations at each of the Ter tempera-
tures are listed in appendix B. Table A-3 summarizes the values ¢ H° and . C§
from all the calculations, which seem to show that AC2 is constant. '» test this

premise further, the enthalpies in table A-3 were fit linearly with t »erature with
the least-squares program. The results of this calculation are shov n table A-4.
Again, agreement between experimental and computed enthalpies anc . small stan-
dard deviations of the mean suggest that the fit is adequate and th Cp can be
considered constant at 66 cal/mole-K.

These results suggest, then, that the ACJ for the formation constant of
Cr(H,0)sNCS?* is not spurious, and that temperature-dependent enthalpies should
be much more common for inorganic reactions, one need only extend the temperature
range to find the temperature dependence. As table A-5 shows, many inorganic
equilibria®*” 27 have been measured over narrow temperature ranges, in contrast to
Postmus and King's experiments. In all instances in table A-6 where four tempera-
ture measurements are available, application of Blandamer's method (equatiion 4) re-
vealed temperature-dependent enthalpies (tables A-6 and A-7). Postmus and King-*®
also noted that the acid dissociation constant of CP(H20)63+ had a temperature-
dependent AH®., though much smaller than that for the formation constant of
Cr(H,0)sNCS?*.

These results also caution against extrapolating rate or equilibrium data
beyond the measured temperature range. Assume, for example, that one used only
the three formation constants from the ratio of rate constants to compute AH° by
the following:

* - [+] [o]

K = ¢("AH?/RT + A8°/R) (5)
Table 8 shows the fit obtained with the least-squares program. One would con-
clude that the fit is adequate over this temperature range, but it would be a mis-
take to extrapolate to 94.6°C with this value of AH°.

4. CONCLUSIONS

a. The heat capacity for the formation constant of Cr(H.0):NCS?" is
constant with temperature. This suggests that the heat capacity is not spurious,
in the sense of arising from establishment of rapid preequilibria.

*See appendix A for tables.
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b. The formation constants of many inorganic equilibria should also have
temperature-dependent enthalpies. Failure to see such temperature dependences
may rest on the narrow temperature range over which most measurements have been
made in comparison to Postmus and King's measurement with Cr(H20)sNCS?*,

10

o _ e - : ‘_.J




LITERATURE CITED

1. Lewis, G. N., and Randall, M. Thermodynamics. 2nd Edition.
Revised by Pitzer, K. S. and Brewer, L. Chapter 22. p 305. McGraw-Hill Book
Co., New York, New York, 1961.

'Yr""""

2, Kohnstam, G. Heat Capacities of Activation and Their Uses in
Mechanistic Studies. Advances in Physical Organic Chemistry. 5. 122 to 172 (1967).

3. Timimi, B. A. The Evaluation of AC§ for Acid-Base Equilibria
from pK Measurement. Electrochimica Acta. 19, 149 to 1%8 (1974).
4. Blandamer, M. J., Scott, J. W. M., and Robertson, R. E.

v o
: RN . .
’ L. T e
. . R

Analysis of the Dependence of Acid Dissociation Constants on Temperature. J.
Chem. Soc. Perkin II, 447 to 456 (1981).

[‘ 5. Albery, W. J. and Robinson, B. H. Measurement of Enthalpies
and Heat Capacities of Activation by Differential Methods. J. Chem. Soc., Trans.
Faraday Soc. 65, 980 to 991 (1969).

6. Eigen, M. Proton Transfer, Acid-Base Catalysis, and Enzy-
matic Hydrolysis. Part I: Elementary Processes. Angewandte Chemie, Int'l Ed.
3, 1 to 72 (1964).

7. Blandamer, M. J., Burgess, J., Duce, P. P., Robertson, R. E.,
and Scott, J. M. W. Analysis of the Dependence on Temperature of the Acid Dis-
sociation Constants for Mono-Carboxylic Acids in Water in Terms of a Two-Stage
Mechanism. J. Chem. Soc., Trans. Faraday Soc. I. 77, 2281 to 2286 (1981).

8. Blandamer, M. J., Robertson, R. E., and Scot, J. M. W.
Thermodynamlcs of Acid-Base React‘ons in Water: A Comment on the Eigen Mech-
anism. J. Am. Chem. Soc. 104, 1136 to 1138 (1982).

9. Blandamer, M. J., Robertson, R. E., and Scott, J. M. W. An
Examination of Parameters Describing the Temperature Dependence of Rate Constants
on temperature for Solvolysis of Various Organic Esters in Water and Aqueous Mix-
tures. Can. J. Chem. 58, 772 to 776 (1980).

10. Blandamer, M. J., Robertson, R. E., Scott, J. M. W., and
Vrielink, A. Evidence for the Incursion of Intermediates in the Hydrolysis of
Tertiary, Secondary, and Primary Substrates. J. Am. Chem. Soc. 102, 2585 to
2592 (1980). ’—

L 1t. Blandamer, M. J., Burgess, J., Duce, P.' P., Robertson, R. E.,
n and Scott, J. M. W. The Dependence on Temperature of Rat¢ Constants for the
if‘ Solvolysis of Alykyl Halides and Related Compounds in Water. J. Chem. Soc.
- Perkin II, 1157 to 1160 (1981).
12. Blandamer, M. J., Burgess, J., Duce, P. P., Robertson, R. E..

and Scott, J. M. W. A Re-Examination of the Effects of Addad Solvent on the Ac-
: tivation Parameters for Solvolysis of t-Butyl Chloride in Water. J. Chem. Soc.,
¥ Trans. Faraday Soc. I. 77, 1999 to 2008 (1981).

DA )

11

AL Gy




-vrr,,,ry P

i etk S ek SR AL AL A 9 S /RNNE M gL AR AR ARt
SR .
@ e

MR At a0

13. Blandamer, M. J., Robertson, R. E., Golding, P. D.. \MueNeil,
J. M., and Scott, J. M. W. On the Heat Capacities of Activation for Displacements
at Primarv and Scondary Carbon Centers in Water. J. Am., Chem. Soc. 103.
2415 to 2416 (1981).

14. Blandamer, M. J. Burgess, J., Duce, P, P., Robertson, R. E.,
and Scott, J. M. W. The Dependence of Acid Dissociation Constants in Water on
Temperature as Expressed by the Guiney Equation. Can. J. Chem. 59, 2845 to
2847 (1981).

15. Blandamer, M. J., Robertson, R. E., Scott, J. M. W., and
Golding, P. E. Some Observations Concerning the Temperature Dependence of the
Reaction of Ammonia with Water. J. Am. Chem. Soc. 103, 5923 to 5925 (1981).

16. Blandamer, M. J., Burgess, J., Duce, P. P., Robertson. R. E.,
and scott, J. M, W. Effects of Added Acetonitrile on the Heat Capacities of Activa-
tion for the Solvolysis of Sample Organic Esters in Water. J. Chem. Soc.. Faraday
Trans. I. 78, 881 to 886 (1982).

17. Blandamer, M. J., Burgess, J., Clare, N. P., Duce, P. P.,
Gray. R. P., Robertson, R. E., and Scott, J. M. W. Analysis of the Dependence
on Temperature of Kinetic Solvent Isotope Effects. J. Chem. Soc., Faraday Trans.
I. 73. 1103 to 1'15 (1982).

18. Blandamer, M. J. Kinetics of Organic Reactions in Water and
Aqueous Mixtures. Advances in Physical Organic Chemistry. 14, 203 to 352 (1976).

19. Koren, R. and Perlmutter-Hayman. Rapid Pre-equilibria as a
Cause for Change of Activation Energy with Temperature. J. Phys. Chem. 75,
2372 to 2376 (1971).

20. Rossitti, F. J. C. "The Thermodynamics of lMetal Ion Complex
Formation in Solution.™ Modern Coordination Chemistry=Principles and Methods,
Lewis. J. and Wilkins, R. G.. eds. Chapter 1. Interscience Publishers Inc.. New
York. New York. 1960,

21. Postmus, C. and King, E. L. The Equilibria in Acidic Solu-
tions of “hromium (III) Ion and Thiocyanate Ion. J. Phys. Chem. 39, 1208 to
1216 (1953).

22, Postmus, C., and King, E. L. The Rate Law for the Forward
and Reverse of the Reaction Cr(H,0)s* + NCS- Cr(H:0)sNCS** + H,0. J.
Phvs. Chem. 59, 1216 to 1221 (1955).

23. Moore, R. H., and Ziegler, R. K. Los Alamos Scientific Lab-
oratory Report LA-2367. The Solution of the General Least-Squares Problem with
Speciil Reference to High-Speed Computers. March 1960. UNCLASSIFIED Report.

24. Betts, R. H. and Dainton, F. S. Electron Transfer and Other
processes Involved in the Spontaneous Bleaching of Acidified Aqueous Solutions of
Ferric Thiocyanate. J. Am. Chem. Soc. 75, 5721-5727 (1953).

25. Milburn, R. N. A Spectrophotometric Study of the Hvdrolysis
of Iron (IIl). III. Heats and Entropies of Hydrolysis. J. Am. Chem. Soc. 79.
537 to 540 (1957).

12




I

Oiad

26. Sutcliffe, L. H.,, and Weber, J. R. The Reaction Between
Cerium (III) and Cobalt (III). J. Chem. Soc., Trans. Faraday Soc. 52, 1225 tu
1234 (1956).

"-(af' T

27. Hardwicke, T. J. and Robertson, E. Ionic Species in Ceric
Perchlorate Solutions. Can. J. Chem. 29, 818 to 827 (1951).

. iy Yvrl‘ilv.u
. i -

Y

{

13

—
«a

Y

L . o . . . e



T el

i i e e

LR o A

e W

el

T




APPENDIX A

COLLECTED TABLES

a
Table A-1. Formation Constants for Cr(H20)5N082+

K T

M x 1078 °c
1.24 94.6
1.15 84.8
1.06 73.7
1.04 63.6
1.03 46.2
1.10 30.0
1.12° 30.0
1.23° 25.1
1.38° 14.0

a Taken from reference 21. Formation constants corrected
to zero ionic strength.

b Ratio of forward and reverse rate constants (reference 22),




Table A-2. Temperature Fit of Formation Constant at 94.6° C

T K, exgerimenta;l_____ $ calculated*
C MLx 1070 mtx 1073
84.8 1.15 1.14
73.7 1.06 1.06
63.6 1.04 1.03
46.2 1.03 1.03
30.0 1.10 1.13
30.0 1.12 1.13
25.1 1.23 1.19
‘ 14.0 1.38 1.38

*AH® = 2,535 + 150 cal/mole: AC; = 64.7 + 4; error expressed as standard

deviation of the mean.
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Table A-3. Summary of Enthalpies and Heat Capacities
for Formation Constant of Cr(HZO)SN(;S"

.
8

T AH® AE&

°C cal/mole cal/mole-K
94.6 2,535 * 150%* 64.7 = 3*
84.8 1,991 + 169 66.6 + 5

73.7 1,201 * 182 66.2 = 7

63.6 548 * 132 62.6 + 6

46, 2 -580 * 57 65.7 + 4

30.0 -1,765 + 183 76.6 * 8

30.0 -1,693 + 126 69.9 + 8

25.1 -1,998 + 275 61.1 + 12
14.0 -2,668 + 135 65.1 + 5

*Error expressed as standard deviation of the mean.
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Table A-4.

Linear Fit of Enthalpy versus Temperature

Y S ¥ S _AHe calculated*
s cal/mole cal/mole

94.6 2,535 2,579

84.8 1,991 1,934

73.7 1,201 1,203

63.6 548 9,538

46.2 -580 -608

30.0 -1,765 -1,675

30.0 -1,693 -1,675

25.1 -1,998 ~1,998

14.0 -2,668 -2,728

*AHo = -3,650 * 36 cal/mole; ACJ = 65.9 + 0.6 cal/mole-K
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Table A-5. Temperature Range for Measuring Some Inorganic Equilibria

Reaction No. of Measurements Range Reference
°C
Fe + NCS :=— FeNCSs?2' 11.4 to 28.5 24
Fed* — poon2* + 18 to 32 25
9FeOHZ  — (FeOH);+ 18 to 32 25
Co¥" == cooH?" + H+ 12.5 to 28.2 26
ce* == ceon®* + u* 5 to 35 27
2CeOH3 — [Ce-0-Ce1®* + H 5 to 35 27

Appendix A
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Table A-6. Enthalpy and Heat Capacity
for Cobaltic Ion Dissociation
Using Equation (4)

. T AHP AC3

- oc __________ kcal/mole “Kcal/mole-K

:5_3 12.5 10.3 -2.0

n 18.4 10.1 -2.0

s 23.8 2.0 2.0
28.2 1.5 -0.7

u-. T

*Coa+= CoOH2+ +H

T
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Table A-7. Enthalpy and Heat Capacities by Equation (4)
for Ceric Ion Dissociation ® and Dimerizationb
o8 o8 oD ob
Temperature AH . CP AH A CP
°C kcal /mole kecal /mole-K kecal /mole-K kcal/mole-K
5 11.8 0.30 42.4 -2.9
15 13.6 0.39 -10.8 -1.1
25 17.4 0.39 -19.5 -0.7
35 21.3 0.38 -31.3 -0.8
a ~ 4+ Kig 3+ +
Ce + HZO ~——— CeOH" + H

K
b 2ce0Ht —=> (Ce-0-Ce)®* + H.O

Appendix A
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Table A-8. Temperature Fit of Formation Constant Using Kinetic Data

Temperature K, experimental K, fit*
°C M~!x 10-°% M-!x 10°°
30.0 1.10 1.12
25.1 1.23 1.20
14.0 1.38 1.39

*AH = -2.3 + 0.5 kcal/mole; AS = 6.5 * 1.7 cal/mole-K.
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APPENDIX B

TEMPERATURE FIT OF FORMATION CONSTANT
AT VARIOUS TEMPERATURES

Table B-1. Temperature Fi: of Formation Constant at 84.8°C

Temperature K, experimental K, calculated *
°C M~ x 103 M-!x 10
94.6 1.24 1.25
73.7 1.06 1.07
63.6 1.04 1.03
46.2 1.03 1.03
30.0 1.10 1.13
30.0 1.12 1.13
25.1 1.23 1.19
14.0 1.38 1.36
*AH® = 1,991 * 169 cal/mole; Acg = 66.6 + 5 cal/mole-K.
23
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Table B~-2. Temperature Fit of Formation Constant at 73.7°C

Temperature K, experimental K, calculated*
°C M- x 10°° M- x 103
94.6 1.24 1.24
84.8 1.15 1.14
63.6 1.04 1.02
46.2 1.03 1.02
30.0 1.10 1.13
30.0 1.12 1.13
25.1 1.23 1.19
14.0 1.38 1.39
*AH® = 1201 * 182 cal/mole; ACB = 66.2 + 7 cal/mole-K.
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Table B-3. Temperature Fit of Formation Constant at 63.6°C

_Tgmperature K, experimental K, calculated*
°C M-1 x 107 ° M-® x 107
94.6 1.24 1.25
84.8 1.15 1.16
73.7 1.06 1.08
46.2 1.03 1.04
30.0 1.10 1.14
30.0 1.12 1.14
25.1 1.23 1.19
14.0 1.38 1.38
*AH° = 548 + 132 cal/mole; AC; = 62.6 + 6 cal/mole-K.
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Table B-4. Temperature Fit of Formation Constant at 46.2°C

““_A“.'.u“-n..‘-;;mlAL;Mi;gLL

= Temgerature K, exgerimental K, calculated*

p °C M'1x10'3 M-lx 10-3

b

' 94.6 1.24 1.25

: 84.8 1.15 1.15

{
73.7 1.06 1.07
63.6 1.04 1.03
30.0 1.10 1.13
30.0 1.12 1.13
25.1 1.23 1.19
14.0 1.38 1.38

- .

*AH® = -580 + 57 cal/mole; ACp = 65.7 + cal/mole-K.
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Table B-5. Temperature Fit of Formation Constant at 30.0°C
Temperature K, experimental K, calculated
°C M-t x 107 M- x 107
94.6 1.24 1.29° 1.27°
84.8 1.15 1.16 1.15
73.17 1.06 1.06 1.07
63.6 1.04 1.01 1.02
46.2 1.03 1.00 1.02
25.1 1.23 1.16 1.18
14.0 1.38 1.37 1.38

a aH® = -1,765 + 183 cal /mole; ACS = 76.6 + 8 cal/mole-K

- 3nm- 1
(Kgg gog = 1-10 x 10°M7%)
*b AH® = 1,693 + 126 cal/mole; AC; = 69.9 + 6 cal/mole-K
— 3ng 1
(Kgy gog = 1-12 x 10°M° D)
&
-r,
&
- Appendix B
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Temperature Fit of Formation Constant at 25.1°C

Temperature K, experimental K, calculated*
°C Mﬁm'3 M- x 1073
94.6 1.24 1.22
84.8 1.15 1.14
73.7 1.06 1.07
63.6 1.04 1.04
46.2 1.03 1.06
30.0 1.10 1.17
30.0 1.12 1.17
14.0 1.38 1.43
*AH®° =
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Table B-7. Temperature Fit of Formation Constant at 14.0°C

Temperature K, experimental K, calculated*
°C M- x 107° M-! x 1073
94.6 1.24 1.25
84.8 1.15 1.15
73.7 1.06 1.07
63.6 1.04 1.03
46.2 1.03 1.03
30.0 1.10 1.13
30.0 1.12 1.13
25.1 1.23 1.19
*AH° = -2668 + 135 cal/mole; ACS = 65.1 + 5 cal/mole-K.
Appendix B
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